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Various Nonlinear E�ects

• rapid space/time v



Small Disturbances on an Equilibrium

• ordering in general | gradients multiplied by constant parameters

�⊥ � L⊥ =⇒ (pe + p̃



Incompressible Hydrodynamics

• start with MHD, neglect magnetic �eld

(
@v

@t
+ v · ∇v

)
= −1

�
∇p

• take curl, treat � as constant, neglect ∇ · v
(
@

@t
+ v · ∇

)
∇×v = (∇×v) · ∇v

• pressure submerges | only role is to maintain incompressibility

let
@

@t
∇ · v = 0 then ∇2p = −∇ · (�v · ∇v)

• leads to \projection methods" for computations



The Cascade to Smaller Scales

• the \eddy mitosis" model: vortices sheared apart, into smaller ones about half the size

• assume: energy input (\stirring") and loss (\dissipation") occur in well separated ranges in scale
◦ situation of \high Reynolds number" meaning turbulent mixing� viscous or collisional di�usion

• at scale n, have kinetic energy, En = v2
n=2, and \eddy turnover time" inverse to vorticity, (kv)n

• during the mitosis process, energy is conserved → power law

(kv)n−1En−1 = (kv)nEn kn = 2kn−1

• in this \inertial range" one �nds the Kolmogorov scaling law

(En=kn) ∝ k−5=3
n density of states kn

• the vorticity increases towards smaller scales → enstrophy is produced

(kv)n ∝ k2=3
n



Enstrophy in Incompressible Hydrodynamics

• Euler equation in 3D (
@

@t
+ v · ∇

)
∇×v = (∇×v) · ∇v

• note mean squared vorticity (\enstrophy") is not generally conserved

@W

@t
+∇ · (W v) = [(∇×v)(∇×v)] : [∇v] where W =

1

2
(∇×v) · (∇×v)

• enstrophy is transported by the velocity, but grows if : : :

† the velocity has a component along the vorticity, and also diverges in that direction

vortex tube stretching in 3D





What You Can Learn Just From Equations

• energy conservation, energy transfer to smaller scales
◦ statistical redistribution, with more states available at smaller scale
◦ enstrophy must increase

• geometry: enstrophy increase is described by a de�nite quantity
◦ this quantity can only be positive if there are vortex tubes which are stretched by the 
ow

Kolmogorov cascade process must proceed through vortex tube stretching

• the above is found merely by examining the properties of the equations
◦ actually solving them was not necessary



2D Incompressible Hydrodynamics

� in 2D one must have r� v ? v : : : let ŝ be the normal to the plane

r �v = 0 =) v = ŝ�r  =) (r� v) = ŝr2
?

 

� �nd the 2D Euler equation

@




The Importance of Two Dimensionality

• in 
uid dynamics, 2D can be forced by
◦ strong rotation (Proudman-Taylor theorem)
◦ domain anisotropy (the \thin atmosphere" situation)

• in plasma dynamics, 2D is usually forced by
◦ strong background magnetic �eld (\guide �eld"), with Alfv�en velocity vA
◦ speci�c energy density of reservoir � v2

A

◦ main reason: \low beta" meaning Te �Miv
2
A hence �e = 4�pe=B

2 � 1

• in 2D, enstrophy is conserved; therefore

Kolmogorov cascade to small scales cannot occur in 2D





Equations for Beat Waves

• Euler equation
@
k

@t
=
∑

−



Energy Transfer

• �nd energy transfer by multiplying by − k and adding complex conjugate

@Uk

@t
= 2Ckk′ Re [ k
k′ k′′ −  k k′
k′′ ]

@Uk′

@t
= 2Ckk′ Re [ k′
k′′ k −  k′ k′′
k]

@Uk′′

@t
= 2Ckk′ Re [ k′′
k k′ −  k′′ k
k′ ]

• identify transfer channel as terms with opposite sign in one pair of equations, e.g.,

TU (k← k′) = 2Ckk′ Re [− k k′
k′′ ]



Enstrophy Transfer

• �nd enstrophy transfer by multiplying by 
k and adding complex conjugate

@Wk

@t
= 2Ckk′ Re [
k k′
k′′ −
k
k′ k′′ ]

@Wk′

@t
= 2Ckk′ Re [
k′ k′′
k − 
k′
k′′ k]

@Wk′′

@t
= 2Ckk′ Re [




The Dual Cascade

• write energy and enstrophy transfer

TU (k← k′) = 2Ckk′ Re [− k k′
k′′ ] = 2Ckk′ Re
[
(k′′)2 k k′ k′′

]

TW (k← k′) = 2Ckk′ Re [−
k
k′ k′′ ] = 2Ckk′ Re
[
−k2(k′)2 k k′ k′′

]

• note that given a de�nite sign of the triple correlation [ k k′ k′′ ], these are opposite!

• statistically, enstrophy goes to higher k, hence smaller scale, due to the larger k-dependence

† faster mixing, spectral redistribution

• hence energy goes preferentially to lower k, hence larger scale

2D inverse energy cascade

• \maximum entropy" stationary states for discrete systems show Wk ∼ k and Uk ∼ k−1



A Passive Scalar

• density 
uctuations follow incompressible equation

@�̃

@t
+ v · ∇�̃ = 0

• passive scalar: �̃ is advected by the 
ow, but e�ects no back reaction

• in k-space the density equation is the same as for the vorticity

• \
uctuation free energy" or \entropy" is de�ned by squared amplitude

• hence the free energy transfer has the same form as for enstrophy


ow energy to large scales, free energy to small

• very high correlation 
̃↔ �̃ in forced/dissipative turbulence, even with no coupling e�ects



Incompressible MHD

• constant parameters, homogeneous background, keep only quadratic nonlinearities

�

(
@v



2D Incompressible MHD

• constant parameters, homogeneous background, keep only quadratic nonlinearities

�

(
@v

@t
+ v · ∇v

)
= −∇

(
p+

B2

8�

)
+

B · ∇B

4�

• take curl, use 2D to avoid (∇×v) · v and J · ∇B

�

(
@

@t
+ v · ∇

)
∇×v =

1

c
B · ∇J

• de�ne ExB velocity and vorticity, parallel current, parallel gradient

v = vE =
c

B2
B×∇� 
 =

�c2

B2
∇2
⊥� J‖ = b · J

• �nd correction to Euler vorticity equation

@


@t
+ vE · ∇
 = b · ∇J‖





Dissipative Coupling

• beyond MHD, density is not passive, but coupled through parallel currents to the ExB vorticity

• Ohm’s law, parallel, keeping electron pressure gradient

−E‖ = ∇‖�̃ =
1

nee
∇‖p̃e − �‖J̃‖

• parallel compressibility enters electron pressure equation (advection is by the ExB velocity)

@p̃e
@t

+ vE · ∇ (pe + p̃e) =
Te
e
∇‖J̃‖

• appears as parallel di�usivity but couples to �̃

@p̃e
@t

+ vE · ∇ (pT+̃pe)=
T e

nee �‖
∇
‖

(
p̃e − nee�̃

)

• note that ∇‖p̃ � nee∇‖�̃ is the usual situation in gradient driven turbulence

† it cannot be treated by the single 
uid MHD model







Dissipative Coupling Model, notes

• we’ve used a static, resistive, current

† neglects magnetic induction ↔ e�ects of @B=@t,



Scales in the Dissipative Coupling Model

• the Hasegawa-Wakatani equations: dissipative coupling and gradient forcing

c2MiTe
e2B2

(
@

@t
+ vE · ∇

)
∇2
⊥
e�̃

Te
= D

(
p̃e
pe
− e�̃

Te

)

(
@

@t
+ vE · ∇

)
p̃e
pe

+ vE · ∇ log pe = D

(
p̃e
pe
− e�̃

Te

)

• introduces the drift scale �s, de�ned by

�2
s = c2MiTe=e

2B2

• gradient forcing gives the time scale L⊥=cs, from the sound speed cs and pro�le scale length L⊥ L cthe0D1 n2.395611621driftscale �
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Computational Dissipative Coupling Model

• normalise in terms of �s and cs=L⊥, scale variables by a factor of � = �s=L⊥

�← �−1 e�̃=Te p← �−1 p̃e=pe 
← �−1 �2
s∇2
⊥
(
e�̃=Te

)

• only parameter is D ← DL⊥=cs

(
@

@t
+ vE · ∇

)

 = D (p− �)

(
@

@t
+ vE · ∇

)
p = −@�

@y
+D (p− �)

• ExB advection de�ned in terms of a Poisson bracket structure, e.g.,

vE · ∇p = [�; p] =
@�

@x

@p

@y
− @�

@y

@p

@x

• linear forcing terms are the dissipative coupling (D) and the gradient drive: vxE = −@�=@y



Illustration of Dual Cascade

• periodic domain, (20� �s)
2

• examine decaying turbulence started in middle of spectrum (set gradient drive to zero)

pk(0) = �k(0) = a0

[
1 + (k2

⊥=0:32)4
]−1=2

eiΘ

† random phase �

† a0 chosen such that rms amplitude is 3:0

• test \hydrodynamic" limit D = 0

† Euler equation for 
, passive advection for p

• note in some of the �gures label for p is ne



• Time evolution of the hydrodynamic model



• Amplitude spectra in the hydrodynamic model, for p, �, and 
 (’n’, ’p’, and ’w’)
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Energy Transfer in the Dissipative Coupling Model

• switch gradient drive back on

• run to \saturation" de�ned by statistical stationarity for spectral quantities

• wide range of coupling strength, D = 0:01, 0:03, 0:1, 0:3, and 1:0

• displayed for D = 0:1

† energy transfer directions hold for all D checked, only the robustness changes

• D →∞ is the \adiabatic limit" where J‖ → 0 and �→ p

† robustness of vE · ∇p proportional to about D−3=4



• Time evolution of the dissipative coupling model, for the nominal case of D = 0:1



• Saturated state of the dissipative coupling model, for



• Energy and enstrophy transfer in the dissipative coupling model, with D = 0:1
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DW: direction for J
determined by NL

(B Scott Phys Fluids B 1992, Plasma Phys Contr Fusion 1997)

(S Camargo et al Phys Plasmas 1995 and 1996)

J
~

J
~

φ
~

φ
~

p~p~



Transport due to ExB Turbulence

• the turbulence causes a �nite average advective transport, in general : : :

Q = Qe +Qi Qe =

〈
3

2
p̃e v

x
E

〉
Qi =

Q
p


